CUBE
, a regular or solid body, consisting of six equal sides or faces, which are squares.—A die is a small cube.
It is also called a hexaedron, because of its six sides, and is the 2d of the five Platonic or Regular bodies.
The cube is supposed to be generated by the motion of a square plane, along a line equal and perpendicular to one of its sides.
To describe a Rete, or Net, for forming a cube, or with which it may be covered.—Describe six squares as in the annexed figure, upon card paper, paste-board, or the like, of the size of the faces of the proposed cube; and cut it half through by the lines AB, CD, EF, AC, BD; then fold up the several squares till their edges meet, and so form the cube, or a covering over one, as in the figure annexed.
To determine the Surface and Solidity of a Cube.—Multiply one side by itself, which will give one square or face; then this multiplied by 6, the number of faces, will give the whole surface. Also multiply one side twice by itself, that is, cube it, and that will be the solid content.
Duplication of a Cube. See Duplication.
Cubes, or Cubic Numbers, are formed by multiplying any numbers twice by themselves. So the cubes of 1, 2, 3, 4, 5, 6, &c, are 1, 8, 27, 64, 125, 216, &c.
The third differences of the eubes of the natural numbers are all equal to each other, being the constant number 6. For, let m3, n3, p3 be any three adjacent cubes in the natural series as above, that is, whose roots m, n, p have the common difference 1; then because ; so that the difference between the 1st and 2d, and between the 2d and 3d cubes, are and the dif. of these differences, is the 2d difference.
In like manner the next 2d dif. is : hence the dif. of these two 2d diffs. is , which is therefore the constant 3d difference of all the series of cubes. And hence that series of cubes will be formed by addition only, viz, adding always the 3d dif. 6 to find the column or series of 2d diffs, then these added always for the 1st diffs, and lastly these always added for the cubes themselves, as below:
3d Difs. | 2d Difs. | 1st Difs. | Cubes |
6 | 6 | 1 | 0 |
6 | 12 | 7 | 1 |
6 | 18 | 19 | 8 |
6 | 24 | 37 | 27 |
6 | 30 | 61 | 64 |
6 | 36 | 91 | 125 |
6 | 42 | 127 | 216 |
6 | 48 | 169 | 343 |
It is also a pretty property, that any number, and the cube of it, being divided by 6, leave the same remainder; the series of remainders being 0, 1, 2, 3, 4, 5, continually repeated. Or that the differences between the numbers and their cubes, divided by 6, leave always o remaining; and the quotients, with their successive differences, form the several orders of figurate numbers. Thus,
Num. | Cubes. | Difs. | Quot. | 1 Dif. | 2 Dif. |
1 | 1 | 0 | 0 | 0 | 0 |
2 | 8 | 6 | 1 | 1 | 1 |
3 | 27 | 24 | 4 | 3 | 2 |
4 | 64 | 60 | 10 | 6 | 3 |
5 | 125 | 120 | 20 | 10 | 4 |
6 | 216 | 210 | 35 | 15 | 5 |
7 | 343 | 336 | 56 | 21 | 6 |
The following is a Table of the first 1000 cubic numbers. |
TABLE OF CUBES. | |||||||||||
Num | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes |
1 | 1 | 60 | 216000 | 119 | 1685159 | 178 | 5639752 | 237 | 13312053 | 296 | 25934336 |
2 | 8 | 61 | 226981 | 120 | 1728000 | 179 | 5735339 | 238 | 13481272 | 297 | 26198073 |
3 | 27 | 62 | 238328 | 121 | 1771561 | 180 | 5832000 | 239 | 13651919 | 298 | 26463592 |
4 | 64 | 63 | 250047 | 122 | 1815848 | 181 | 5929741 | 240 | 13824000 | 299 | 26730899 |
5 | 125 | 64 | 262144 | 123 | 1860867 | 182 | 6028568 | 241 | 13997521 | 300 | 27000000 |
6 | 216 | 65 | 274625 | 124 | 1906624 | 183 | 6128487 | 242 | 14172488 | 301 | 27270901 |
7 | 343 | 66 | 287496 | 125 | 1953125 | 184 | 6229504 | 243 | 14348907 | 302 | 27543608 |
8 | 512 | 67 | 300763 | 126 | 200376 | 185 | 6331625 | 244 | 14526784 | 303 | 27818127 |
9 | 729 | 68 | 314432 | 127 | 2048383 | 186 | 6434856 | 245 | 14706125 | 304 | 28094464 |
10 | 1000 | 69 | 328509 | 128 | 2097152 | 187 | 6539203 | 246 | 14886936 | 305 | 28372625 |
11 | 1331 | 70 | 343000 | 129 | 2146689 | 188 | 6644672 | 247 | 15069223 | 306 | 28652616 |
12 | 1728 | 71 | 357911 | 130 | 2197000 | 189 | 6751269 | 248 | 15252992 | 307 | 28934443 |
13 | 2197 | 72 | 373248 | 131 | 2248091 | 190 | 6859000 | 249 | 15438249 | 308 | 29218112 |
14 | 2744 | 73 | 389017 | 132 | 2299968 | 191 | 6967871 | 250 | 15625000 | 309 | 29503629 |
15 | 3375 | 74 | 405224 | 133 | 2352637 | 192 | 7077888 | 251 | 15813251 | 310 | 29791000 |
16 | 4096 | 75 | 421875 | 134 | 2406104 | 193 | 7189057 | 252 | 16003008 | 311 | 30080231 |
17 | 4913 | 76 | 438976 | 135 | 2460375 | 194 | 7301384 | 253 | 16194277 | 312 | 30371328 |
18 | 5832 | 77 | 456533 | 136 | 2515456 | 195 | 7414875 | 254 | 16387064 | 313 | 30664297 |
19 | 6859 | 78 | 474552 | 137 | 2571353 | 196 | 7529536 | 255 | 16581375 | 314 | 30959144 |
20 | 8000 | 79 | 493039 | 138 | 2628072 | 197 | 7645373 | 256 | 16777216 | 315 | 31255875 |
21 | 9261 | 80 | 512000 | 139 | 2685619 | 198 | 7762392 | 257 | 16974593 | 316 | 31554496 |
22 | 10648 | 81 | 531441 | 140 | 2744000 | 199 | 7880599 | 258 | 17173512 | 317 | 31855013 |
23 | 12167 | 82 | 551368 | 141 | 2803221 | 200 | 8000000 | 259 | 17373979 | 318 | 32157432 |
24 | 13824 | 83 | 571787 | 142 | 2863288 | 201 | 8120601 | 260 | 17576000 | 319 | 32461759 |
25 | 15625 | 84 | 592704 | 143 | 2924207 | 202 | 8242408 | 261 | 17779581 | 320 | 32768000 |
26 | 17576 | 85 | 614125 | 144 | 2985984 | 203 | 8365427 | 262 | 17984728 | 321 | 33076161 |
27 | 19683 | 86 | 636056 | 145 | 3048625 | 204 | 8489664 | 263 | 18191447 | 322 | 33386248 |
28 | 21952 | 87 | 658503 | 146 | 3112136 | 205 | 8615125 | 264 | 18399744 | 323 | 33698267 |
29 | 24389 | 88 | 681472 | 147 | 3176523 | 206 | 8741816 | 265 | 18609625 | 324 | 34012224 |
30 | 27000 | 89 | 704969 | 148 | 3241792 | 207 | 8869743 | 266 | 18821096 | 325 | 34328125 |
31 | 29791 | 90 | 729000 | 149 | 3307949 | 208 | 8998912 | 267 | 19034163 | 326 | 34645976 |
32 | 32768 | 91 | 753571 | 150 | 3375000 | 209 | 9123329 | 268 | 19248832 | 327 | 34965783 |
33 | 35937 | 92 | 778688 | 151 | 3442951 | 210 | 9261000 | 269 | 19465109 | 328 | 35287552 |
34 | 39304 | 93 | 804357 | 152 | 3511808 | 211 | 9393931 | 270 | 19683000 | 329 | 35611289 |
35 | 42875 | 94 | 830584 | 153 | 3581577 | 212 | 9528128 | 271 | 19902511 | 330 | 35937000 |
36 | 46656 | 95 | 857375 | 154 | 3652264 | 213 | 9663597 | 272 | 20123648 | 331 | 36264691 |
37 | 50653 | 96 | 884736 | 155 | 3723875 | 214 | 9800344 | 273 | 20346417 | 332 | 36594368 |
38 | 54872 | 97 | 912673 | 156 | 3796416 | 215 | 9938375 | 274 | 20570824 | 333 | 36926037 |
39 | 59319 | 98 | 941192 | 157 | 3869893 | 216 | 10077696 | 275 | 20796875 | 334 | 37259704 |
40 | 64000 | 99 | 970299 | 158 | 3944312 | 217 | 10218313 | 276 | 21024576 | 335 | 37595375 |
41 | 68921 | 100 | 1000000 | 159 | 4019679 | 218 | 10360232 | 277 | 21253933 | 336 | 37933056 |
42 | 74088 | 101 | 1030301 | 160 | 4096000 | 219 | 10503459 | 278 | 21484952 | 337 | 38272753 |
43 | 79507 | 102 | 1061208 | 161 | 4173281 | 220 | 10648000 | 279 | 21717639 | 338 | 38614472 |
44 | 85184 | 103 | 1092727 | 162 | 4251528 | 221 | 10793861 | 280 | 21952000 | 339 | 38958219 |
45 | 91125 | 104 | 1124864 | 163 | 4330747 | 222 | 10941048 | 281 | 22188041 | 340 | 39304000 |
46 | 97336 | 105 | 1157625 | 164 | 4410944 | 223 | 11089567 | 282 | 22425768 | 341 | 39651821 |
47 | 103823 | 106 | 1191016 | 165 | 4492125 | 224 | 11239424 | 283 | 22665187 | 342 | 40001688 |
48 | 110592 | 107 | 1225043 | 166 | 4574296 | 225 | 11390625 | 284 | 22906304 | 343 | 40353607 |
49 | 117649 | 108 | 1259712 | 167 | 4657463 | 226 | 11543176 | 285 | 23149125 | 344 | 40707584 |
50 | 125000 | 109 | 1295029 | 168 | 4741632 | 227 | 11697083 | 286 | 23393656 | 345 | 41063625 |
51 | 132651 | 110 | 1331000 | 169 | 4826809 | 228 | 11852352 | 287 | 23639903 | 346 | 41421736 |
52 | 140608 | 111 | 1367631 | 170 | 4913000 | 229 | 12008989 | 288 | 23887872 | 347 | 41781923 |
53 | 148877 | 112 | 1404928 | 171 | 5000211 | 230 | 12167000 | 289 | 24137569 | 348 | 42144192 |
54 | 157464 | 113 | 1442897 | 172 | 5088448 | 231 | 12326391 | 290 | 24389000 | 349 | 42508549 |
55 | 166375 | 114 | 1481544 | 173 | 5177717 | 232 | 12487168 | 291 | 24642171 | 350 | 42875000 |
56 | 175616 | 115 | 1520875 | 174 | 5268024 | 233 | 12649337 | 292 | 24897088 | 351 | 43243551 |
57 | 185193 | 116 | 1560896 | 175 | 5359375 | 234 | 12812904 | 293 | 25153757 | 352 | 43614208 |
58 | 195112 | 117 | 1601613 | 176 | 5451776 | 235 | 12977875 | 294 | 25412184 | 353 | 43986977 |
59 | 205379 | 118 | 1643032 | 177 | 5545233 | 236 | 13144256 | 295 | 25672375 | 354 | 44361864 |
Num | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes | Num. | Cubes |
355 | 44738875 | 417 | 72511713 | 479 | 109902239 | 541 | 158340421 | 603 | 219256227 | 665 | 294079625 |
356 | 45118016 | 418 | 73034632 | 480 | 110592000 | 542 | 159220088 | 604 | 220348864 | 666 | 295408296 |
357 | 45499293 | 419 | 73560059 | 481 | 111284641 | 543 | 160103007 | 605 | 221445125 | 667 | 296740963 |
358 | 45882712 | 420 | 74088000 | 482 | 111980168 | 544 | 160989184 | 606 | 222545016 | 668 | 298077632 |
359 | 46268279 | 421 | 74618461 | 483 | 112678587 | 545 | 161878625 | 607 | 223648543 | 669 | 299418309 |
560 | 46656000 | 422 | 75151448 | 484 | 113379904 | 546 | 162771336 | 608 | 224755712 | 670 | 300763000 |
361 | 47045881 | 423 | 75686967 | 485 | 114084125 | 547 | 163667323 | 609 | 225866529 | 671 | 302111711 |
362 | 47437928 | 424 | 76225024 | 486 | 114791256 | 548 | 164566592 | 610 | 226981000 | 672 | 303464448 |
363 | 47832147 | 425 | 76765625 | 487 | 115501303 | 549 | 165469149 | 611 | 228099131 | 673 | 304821217 |
364 | 48228544 | 426 | 77308776 | 488 | 116214272 | 550 | 166375000 | 612 | 229220928 | 674 | 306182024 |
365 | 48627125 | 427 | 77854483 | 489 | 116930169 | 551 | 167284151 | 613 | 230346397 | 675 | 307546875 |
366 | 49027896 | 428 | 78402752 | 490 | 117649000 | 552 | 168196608 | 614 | 231475544 | 676 | 308915776 |
367 | 49430863 | 429 | 78953589 | 491 | 118370771 | 553 | 169112377 | 615 | 232608375 | 677 | 310288733 |
368 | 49836032 | 430 | 79507000 | 492 | 119095488 | 554 | 170031464 | 616 | 233744896 | 678 | 311665752 |
369 | 50243409 | 431 | 80062991 | 493 | 119823157 | 555 | 170953875 | 617 | 234885113 | 679 | 313046839 |
370 | 50653000 | 432 | 80621568 | 494 | 120553784 | 556 | 171879616 | 618 | 236029032 | 680 | 314432000 |
371 | 51064811 | 433 | 81182737 | 495 | 121287375 | 557 | 172808693 | 619 | 237176659 | 681 | 315821241 |
372 | 51478848 | 434 | 81746504 | 496 | 122023936 | 558 | 173741112 | 620 | 238328000 | 682 | 317214568 |
373 | 51895117 | 435 | 82312875 | 497 | 122763473 | 559 | 174676879 | 621 | 239483061 | 683 | 318611987 |
374 | 52313624 | 436 | 82881856 | 498 | 123505992 | 560 | 175616000 | 622 | 240641848 | 684 | 320013504 |
375 | 52734375 | 437 | 83453453 | 499 | 124251499 | 561 | 176558481 | 623 | 241804367 | 685 | 321419125 |
376 | 53157376 | 438 | 84027672 | 500 | 125000000 | 562 | 177504328 | 624 | 242970624 | 686 | 322828856 |
377 | 53582633 | 439 | 84604519 | 501 | 125751501 | 563 | 178453547 | 625 | 244140625 | 687 | 324242703 |
378 | 54010152 | 440 | 85184000 | 502 | 126506008 | 564 | 179406144 | 626 | 245314376 | 688 | 325660672 |
379 | 54439939 | 441 | 85766121 | 503 | 127263527 | 565 | 180362125 | 627 | 246491883 | 689 | 327082769 |
380 | 54872000 | 442 | 86350888 | 504 | 128024064 | 566 | 181321496 | 628 | 247673152 | 690 | 328509000 |
381 | 55306341 | 443 | 86938307 | 505 | 128787625 | 567 | 182284263 | 629 | 248858189 | 691 | 329939371 |
382 | 55742968 | 444 | 87528384 | 506 | 129554216 | 568 | 183250432 | 630 | 250047000 | 692 | 331373888 |
383 | 56181887 | 445 | 88121125 | 507 | 130323843 | 569 | 184220009 | 631 | 251239591 | 693 | 332812557 |
384 | 56623104 | 446 | 88716536 | 508 | 131096512 | 570 | 185193000 | 632 | 252435968 | 694 | 334255384 |
385 | 57066625 | 447 | 89314623 | 509 | 131872229 | 571 | 186169411 | 633 | 253636137 | 695 | 335702375 |
386 | 57512456 | 448 | 89915392 | 510 | 132651000 | 572 | 187149248 | 634 | 254840104 | 696 | 337153536 |
387 | 57960603 | 449 | 90518849 | 511 | 133432831 | 573 | 188132517 | 635 | 256047875 | 697 | 338608873 |
388 | 58411072 | 450 | 91125000 | 512 | 134217728 | 574 | 189119224 | 636 | 257259456 | 698 | 340068392 |
389 | 58863869 | 451 | 91733851 | 513 | 135005697 | 575 | 190109375 | 637 | 258474853 | 699 | 341532099 |
390 | 59319000 | 452 | 92345408 | 514 | 135796744 | 576 | 191102976 | 638 | 259694072 | 700 | 343000000 |
391 | 59776471 | 453 | 92959677 | 515 | 136590875 | 577 | 192100033 | 639 | 260917119 | 701 | 344472101 |
392 | 60236288 | 454 | 93576664 | 516 | 137388096 | 578 | 193100552 | 640 | 262144000 | 702 | 345948008 |
393 | 60698457 | 455 | 94196375 | 517 | 138188413 | 579 | 194104539 | 641 | 263374721 | 703 | 347428927 |
394 | 61162984 | 456 | 94818816 | 518 | 138991832 | 580 | 195112000 | 642 | 264609288 | 704 | 348913664 |
395 | 61629875 | 457 | 95443993 | 519 | 139798359 | 581 | 196122941 | 643 | 265847707 | 705 | 350402625 |
396 | 62099136 | 458 | 96071912 | 520 | 140608000 | 582 | 197137368 | 644 | 267089984 | 706 | 351895816 |
397 | 62570773 | 459 | 96702579 | 521 | 141420761 | 583 | 198155287 | 645 | 268336125 | 707 | 353393243 |
398 | 63044792 | 460 | 97336000 | 522 | 142236648 | 584 | 199176704 | 646 | 269586136 | 708 | 354894912 |
399 | 63521199 | 461 | 97972181 | 523 | 143055667 | 585 | 200201625 | 647 | 270840023 | 709 | 356400829 |
400 | 64000000 | 462 | 98611128 | 524 | 143877824 | 586 | 201230056 | 648 | 272097792 | 710 | 357911000 |
401 | 64481201 | 463 | 99252847 | 525 | 144703125 | 587 | 202262003 | 649 | 273359449 | 711 | 359425431 |
402 | 64964808 | 464 | 99897344 | 526 | 145531576 | 588 | 203297472 | 650 | 274625000 | 712 | 360944128 |
403 | 65450827 | 465 | 100544625 | 527 | 146363183 | 589 | 204336469 | 651 | 275894451 | 713 | 362467097 |
404 | 65939264 | 466 | 101194696 | 528 | 147197952 | 590 | 205379000 | 652 | 277167808 | 714 | 363994344 |
405 | 66430125 | 467 | 101847563 | 529 | 148035889 | 591 | 206425071 | 653 | 278445077 | 715 | 365525875 |
406 | 66923416 | 468 | 102503232 | 530 | 148877000 | 592 | 207474688 | 654 | 279726264 | 716 | 367061696 |
407 | 67419143 | 469 | 103161709 | 531 | 149721291 | 593 | 208527857 | 655 | 281011375 | 717 | 368601813 |
408 | 67911312 | 470 | 103823000 | 532 | 150568768 | 594 | 209584584 | 656 | 282300416 | 718 | 370146232 |
409 | 68417929 | 471 | 104487111 | 533 | 151419437 | 595 | 210644875 | 657 | 283593393 | 719 | 371694959 |
410 | 68921000 | 472 | 105154048 | 534 | 152273304 | 596 | 211708736 | 658 | 284890312 | 720 | 373248000 |
411 | 69426531 | 473 | 105823817 | 535 | 153130375 | 597 | 212776173 | 659 | 286191179 | 721 | 374805361 |
412 | 69934528 | 474 | 106496424 | 536 | 153990656 | 598 | 213847192 | 660 | 287496000 | 722 | 376367048 |
413 | 70444997 | 475 | 107171875 | 537 | 154854153 | 599 | 214921799 | 661 | 288804781 | 723 | 377933067 |
414 | 70957944 | 476 | 107850176 | 538 | 155720872 | 600 | 216000000 | 662 | 290117528 | 724 | 379503424 |
415 | 71473375 | 477 | 108531333 | 539 | 156590819 | 601 | 217081801 | 663 | 291434247 | 725 | 381078125 |
416 | 71991296 | 478 | 109215352 | 540 | 157464000 | 602 | 218167208 | 664 | 292754944 | 726 | 382657176 |
Num | Cubes. | Num | Cubes. | Num | Cubes. | Num | Cubes. | Num | Cubes. |
727 | 384240583 | 782 | 478211768 | 837 | 586376253 | 892 | 709732288 | 947 | 849278123 |
728 | 385828352 | 783 | 480048687 | 838 | 588480472 | 893 | 712121957 | 948 | 851971392 |
729 | 387420489 | 784 | 481890304 | 839 | 590589719 | 894 | 714516984 | 949 | 854670349 |
730 | 389017000 | 785 | 483736625 | 840 | 592704000 | 895 | 716917375 | 950 | 857375000 |
731 | 390617891 | 786 | 485587656 | 841 | 594823321 | 896 | 719323136 | 951 | 860085351 |
732 | 392223168 | 787 | 487443403 | 842 | 596947688 | 897 | 721734273 | 952 | 862801408 |
733 | 393832837 | 788 | 489303872 | 843 | 599077107 | 898 | 724150792 | 953 | 865523177 |
734 | 395446904 | 789 | 491169069 | 844 | 601211584 | 899 | 726572699 | 954 | 868250664 |
735 | 397065375 | 790 | 493039000 | 845 | 603351125 | 900 | 729000000 | 955 | 870983875 |
736 | 398688256 | 791 | 494913671 | 846 | 605495736 | 901 | 731432701 | 956 | 873722816 |
737 | 400315553 | 792 | 496793088 | 847 | 607645423 | 902 | 733870808 | 957 | 876467493 |
738 | 401947272 | 793 | 498677257 | 848 | 609800192 | 903 | 736314327 | 958 | 879217912 |
739 | 403583419 | 794 | 500566184 | 849 | 611960049 | 904 | 738763264 | 959 | 881974079 |
740 | 405224000 | 795 | 502459875 | 850 | 614125000 | 905 | 741217625 | 960 | 884736000 |
741 | 406869021 | 796 | 504358336 | 851 | 616295051 | 906 | 743677416 | 961 | 887503681 |
742 | 408518488 | 797 | 506261573 | 852 | 618470208 | 907 | 746142643 | 962 | 890277128 |
743 | 410172407 | 798 | 508169592 | 853 | 620650477 | 908 | 748613312 | 963 | 893056347 |
744 | 411830784 | 799 | 510082399 | 854 | 622835864 | 909 | 751089429 | 964 | 895841344 |
745 | 413493625 | 800 | 512000000 | 855 | 625026375 | 910 | 753571000 | 965 | 898632125 |
746 | 415160936 | 801 | 513922401 | 856 | 627222016 | 911 | 756058031 | 966 | 901428696 |
747 | 416832723 | 802 | 515849608 | 857 | 629422793 | 912 | 758550528 | 967 | 904231063 |
748 | 418508992 | 803 | 517781627 | 858 | 631628712 | 913 | 761048497 | 968 | 907039232 |
749 | 420189749 | 804 | 519718464 | 859 | 633839779 | 914 | 763551944 | 969 | 909853209 |
750 | 421875000 | 805 | 521660125 | 860 | 636056000 | 915 | 766060875 | 970 | 912673000 |
751 | 423564751 | 806 | 523606616 | 861 | 638277381 | 916 | 768575296 | 971 | 915498611 |
752 | 425259008 | 807 | 525557943 | 862 | 640503928 | 917 | 771095213 | 972 | 918330048 |
753 | 426957777 | 808 | 527514112 | 863 | 642735647 | 918 | 773620632 | 973 | 921167317 |
754 | 428661064 | 809 | 529475129 | 864 | 644972544 | 919 | 776151559 | 974 | 924010424 |
755 | 430368875 | 810 | 531441000 | 865 | 647214625 | 920 | 778688000 | 975 | 926859375 |
756 | 432081216 | 811 | 533411731 | 866 | 649461896 | 921 | 781229961 | 976 | 929714176 |
757 | 433798093 | 812 | 535387328 | 867 | 651714363 | 922 | 783777448 | 977 | 932574833 |
758 | 435519512 | 813 | 537366797 | 868 | 653972032 | 923 | 786330467 | 978 | 935441352 |
759 | 437245479 | 814 | 539353144 | 869 | 656234909 | 924 | 788889024 | 979 | 938313739 |
760 | 438976000 | 815 | 541343375 | 870 | 658503000 | 925 | 791453125 | 980 | 941192000 |
761 | 440711081 | 816 | 543338496 | 871 | 660776311 | 926 | 794022776 | 981 | 944076141 |
762 | 442450728 | 817 | 545338513 | 872 | 663054848 | 927 | 796597983 | 982 | 946966168 |
763 | 444194947 | 818 | 547343432 | 873 | 665338617 | 928 | 799178752 | 983 | 949862087 |
764 | 445943744 | 819 | 549353259 | 874 | 667627624 | 929 | 801765089 | 984 | 952763904 |
765 | 447697125 | 820 | 551368000 | 875 | 669921875 | 930 | 804357000 | 985 | 955671625 |
766 | 449455096 | 821 | 553387661 | 876 | 672221376 | 931 | 806954491 | 986 | 958585256 |
767 | 451217663 | 822 | 555412248 | 877 | 674526133 | 932 | 809557568 | 987 | 961504803 |
768 | 452984832 | 823 | 557441767 | 878 | 676836152 | 933 | 812166237 | 988 | 964430272 |
769 | 454756609 | 824 | 559476224 | 879 | 679151439 | 934 | 814780504 | 989 | 967361669 |
770 | 456533000 | 825 | 561515625 | 880 | 681472000 | 935 | 817400375 | 990 | 970299000 |
771 | 458314011 | 826 | 563559976 | 881 | 683797841 | 936 | 820025856 | 991 | 973242271 |
772 | 460099648 | 827 | 565609283 | 882 | 686128968 | 937 | 822656953 | 992 | 976191488 |
773 | 461889917 | 828 | 567663552 | 883 | 688465387 | 938 | 825293672 | 993 | 979146657 |
774 | 463684824 | 829 | 569722789 | 884 | 690807104 | 939 | 827936019 | 994 | 982107784 |
775 | 465484375 | 830 | 571787000 | 885 | 693154125 | 940 | 830584000 | 995 | 985074875 |
776 | 467288576 | 831 | 573856191 | 886 | 695506456 | 941 | 833237621 | 996 | 988047936 |
777 | 469097433 | 832 | 575930368 | 887 | 697864103 | 942 | 835896888 | 997 | 991026973 |
778 | 470910952 | 833 | 578009537 | 888 | 700227072 | 943 | 838561807 | 998 | 994011992 |
779 | 472729139 | 834 | 580093704 | 889 | 702595369 | 944 | 841232384 | 999 | 997002999 |
780 | 474552000 | 835 | 582182875 | 890 | 704969000 | 945 | 843908625 | 1000 | 100000000 |
781 | 476379541 | 836 | 584277056 | 891 | 707347971 | 946 | 846590536 |
The Cube of a Binomial, is equal to the cubes of the two parts or members, together with triple of the two parallelopipedons under each part and the square of the other; viz, . And hence the common method of extracting the cube root.
Cubic Equations, are those in which the unknown quantities rise to three dimensions; as x3=a, or , or , &c.
All cubic equations may be reduced to this form, ; viz, by taking away the 2d term.
All cubic equations have three roots; which are either all real, or else one only is real, and the other two imaginary; for all roots become imaginary by pairs.
But the nature of the roots as to real and imaginary, is known partly from the sign of the co-efficient p, and partly from the relation between p and q: for the equation has always two imaginary roots when p is positive; it has also two imaginary roots when p is negative, provided ―(1/3)p)3 is less ―(1/2)q)2, or 4p3 less than 27q2; otherwise the roots are all real, namely, whenever p is negative, and 4p3 either equal to, or greater than 27q2.
Every cubic equation of the above form, viz, wanting the 2d term, has both positive and negative roots, and the greatest root is always equal to the sum of the two less roots; viz, either one positive root equal to the sum of the two negative ones, or else one negative root equal to the sum of two smaller and positive ones. And the sign of the greatest, or single root, is positive or negative, according as q is positive or negative when it stands on the right-hand side of the equation, thus ; and the two smaller roots have always the contrary sign to q.
So that, in general, the sign of p determines the nature of the roots, as to real and imaginary; and the sign of q determines the affection of the roots, as to positive and negative. See my Tract on Cubic Equations in the Philos. Trans. for 1780.
To find the Values of the Roots of Cubic Equations. Having reduced the equation to this form , its root may be found in various ways; the first of these, is that which is called Cardan's Rule, by whom it was first published, but invented by Ferreus and Tartalea. See Algebra. The rule is this: Put a=(1/3)p, and b=(1/2)q; then is Cardan's root ; or if there be put , and ; then , the 1st or Cardan's root, also is the 2d root, and is the 3d root.
Now the first of these, or Cardan's root, is always a real root, though it is not always the greatest root, as it has been commonly mistaken for. And yet this rule always exhibits the root in the form of an imaginary quantity when the equation has no imaginary roots at all; but in the form of a real quantity when the equation has two imaginary roots. See the reason of this explained in my Tract above cited, pa. 407. As to the other two roots, viz, though, in their general form, they have an imaginary appearance; yet, by substituting certain particular numbers, they come out in a real form in all such cases as they ought to be so.
But, after the first root is found, by Cardan's rule, the other two roots may be found, or exhibited, in several other different ways; some of which are as follow:
Let r denote the 1st, or Cardan's root, and v and w the other two roots: then is , and vwr=q; and the resolution of these two equations will give the other two roots v and w.
Or resolve the quadratic equation , and its two roots will be those sought. Or the same two roots will be either.
Ex. 1. If the equation be : here ; hence : therefore , the 1st root; and , the other two roots.
Ex. 2. If : here a=-2, and b=2; therefore : hence then , the first root; and 1±√3 the other two roots.
Ex. 3. If : here a=6, and b=3; then , and : therefore , the 1st root, and are the two other roots.
2. Another method for the roots of the equation , is by means of infinite series, as shewn at pa. 415 and seq. of my Tract above cited; whence it appears that the roots are exhibited in various forms of series as follow: viz, &c for the 1st root, and &c for the two other roots: where , and . |
And various other series for the same purpose may also be seen in my Tract, so often before cited.
3. A third method for the roots of cubic equations, is by angular sections, and the table of sines. It was first hinted by Bombelli, in his Algebra, that angles are trisected by the resolution of cubic equations. Afterwards, Vieta gave the resolution of cubics, and the higher equations, by angular sections. Next, Albert Girard, in his Invention Nouvelle en l'Algebre, shews how to resolve the irreducible case in cubics by a table of sines: and he also constructs the same, or finds the roots, by the intersection of the hyperbola and circle. Halley and De Moivre also gave rules and examples of the same sort of resolutions by a table of sines. And, lastly, Mr. Anthony Thacker invented, and Mr. William Brown computed, a large set of similar tables, for resolving affected quadratic and cubic equations, with their application to the resolution of biquadratic ones.
4. Lastly, the several methods of approach, or approximation, for the roots of all affected equations, which have been used in various ways by Stevin, Vieta, Newton, Halley, Raphson, and others.
To these may be added the method of Trial-and-error, or of Double Position, one of the easiest and best of any. Of this method, let there be taken the last example, viz, , in which it is evident that x is very nearly equal to 1/3, but a little less; take it therefore x=.33; then , but should be 6, and therefore the error is .024063 in defect.
Again suppose x=.34; then , which is .159304 in excess. Therefore , the root as before very nearly.
For the construction of cubic equations, see CONSTRUCTION.
Cubic Foot, of any thing, is so much of it as is contained in a cube whose side is one foot.
Cubic Hyperbola, is a figure expressed by the equation xy2=a, having two asymptotes, and consisting of two hyperbolas, lying in the adjoining angles of the asymptotes, and not in the opposite angles, like the Apollonian hyperbola; being otherwise called by Newton, in his Enumeratio Linearum Tertii Ordinis, an hyperbolismus of a parabola; and is the 65th species of those lines according to him.
Cubic Numbers. See Cubes. Fig 2
Cubic Parabola, a curve, as BCD, of the 2d order, having two infinite legs CB, CD, tending contrary ways. And if the absciss, AP or x, touch the curve in C, the relation between the absciss and ordinate, viz, AP=x, and PM=y, is expressed by the equation ; or when A coincides with C, by the equation y=ax3, which is the simplest form of the equation of this curve.
If the right line AP (fig. 2) cut the cubical parabola in three points A, B, C; and from any point P there be drawn the right line or ordinate PM, cutting the curve in one point M only: then will PM be always as the solid APXBPXCP; which is an essential property of this curve.
And hence it is easy to construct a cubic equation, as , by the intersection of this curve and a right line. See the Construction of a cubic equation by means of the cubic parabola and a right line, by Dr. Wallis, in his Algebra: As also the Construction of equations of 6 dimensions, by means of the cubic parabola and a circle, by Dr. Halley, in a lecture formerly read at Oxford.
The curve of this parabola cannot be rectisied, not even by means of the conic sections. But a circle may be found equal to the Curve Surface, generated by the rotation of the curve AM about the tangent AP to the principal vertex A. Let MN be an ordinate, and MT a tangent at the point M; and let PM be parallel to AN. Divide MN in the point O, so that MO be to ON as TM to MN. Then a mean proportional between TM+ON and 1/3 of AN will be the radius of a circle, whose area is equal to the superficies described by that rotation, viz, of AM about AP.
The Area of a Cubic Parabola is 3/4 of its circumscribing parallelogram.
Cubic Root, of any number, or quantity, is such a quantity as being cubed, or twice multiplied by itself, shall produce that which was given. So, the cubic root of 8 is 2, because 23 or 2X2X2 is equal to 8.
The common method of extracting the cube root, founded on the property given above, viz, , is found in every book of common arithmetic, and is as old at least as Lucas de Burgo, where it is first met with in print. Other methods for the cube root may be seen under the article EXTRACTION of Roots, particularly this one, viz, the cube root of n, or , very nearly, or the cube root of n nearly; where n | is any number given whose cube root is sought, and a3 is the nearest complete cube to n, whether greater or less.
For example, suppose it were proposed to double the cube, or, which comes to the same thing, to extract the cube root of the number 2. Here the nearest cube is 1, whose cube root is 1 also, that is, a3=1, and a=1, also n=2; therefore nearly.
But, for a nearer value, assume now ; then is ; hence , or the cube root of 2, which is true in the last place of decimals.
And this is the simplest and easiest method for the cube root of any number. See its investigation in my Tracts, vol. 1, pa. 49.
Every number or quantity has three cubic roots, one that is real, and two imaginary: So, the cube root of 1 is either 1, or ; and if r be the real root of any cube r3, the two imaginary cubic roots of it will be for any one of these being cubed, gives the same cube r3.
Cubing of a Solid. See Cubature.
Cubo-cube, the 6th power.
Cubo-cubo-cube, the 9th power.