PRIMES

, denote the first divisions into which some whole or integer is divided. As, a minute, or Prime minute, the 60th part of a degree; or the first place of decimals, being the 10th parts of units; or the first division of inches in duodecimals, being the 12th parts of inches; &c.

Prime Numbers, are those which can only be measured by unity, or exactly divided without a remainder, 1 being the only aliquot part: as 2, 3, 5, 7, 11, 13, 17, &c. And they are otherwise called Simple, or Incomposite numbers. No even number is a Prime, because every even number is divisible by 2. No number that ends with 0 or 5 is a Prime, the former being divisible by 10, and the latter by 5. The following Table contains all the Prime numbers, and all the odd composite numbers, under 10,000, with the least Prime divisors of these; the description, nature, and use of which, see immediately following the Table.

A Table of Prime and Composite Odd Numbers, under 10,000.
 012345678910111213141516 1718192021222324252627282930313233
01  37 3  31773  319 013  311313741337 3 73 
03  7313 31911317 3 23370313311 3 73 193  329 3
07  3 113 73 19317 311 07313 37 329233 7331133 
093 113  3  3  37 3 09 3237347 313 353 3  3
11 3  37133  3117317 31129 3  3  37 341 3137
13  3 73 23311 3 13317 1337 3  31973 29323113 
17 37 311 31973  3133731717233 2937 3 113 73 31
19 7311 3  3  323 37 19317193137341113  3  3 
21311133  37 3 193 73 21 317433 1<*>3  37233  3
23 3 173 73 133  3  323  3711323 3437337 311 
273  37173  31373  3 2711341 317133737311 35373
29 3 7323173  3  3 113297313  3177311 329133  
31  3  3 1737 3 113 7313  3 23311 3 1937313 
3337 3 133 73 11331 32333 3 1937 317 3 7313533
37  3 1937113 173 7329 37311133  3 4337 3  347
393  3 73  3 17313 311393737 3  3 7317 343413
41 3 113  329 371731123341 7313 3  319 317 3713
43 1137 3  3237311173 3143319293  37 313 31773 
47 313 3  37 331293 7347  323193  3 413711317 
497 3  3117313 3 193 1749343 3713331 3 73 47317
513  311193 233  37 31351173 73  3 113 13323 3
53 311 37 3  3 73  353 173  3131137 3 433 7
573  3  3  3713323313 57731911337 3  3  37 3
59 37 313 3 7319 3  359 113291737 3 3131173  
61 7319 3  331 313 3711613 373 732313311 3 293 
633  3  37 3  32973 6341313 33117311 37 3 133
67  3  323133 1137 3  673 7311 3 173 473  37
69313 37 3 113 7337133 69293113 233717319 3 73
71 3 73 11313 3 313  3717 319133 73 173 373  
73  3 113  3729319 3117733  341 3 3134713 7193 
7773 133  3  311 3719377  33173  3  3131732911
79  3  3719311133 73 23793  3 43337 37 3 11331
813  3137311 323 3  341811337 3  3297343113 173
83 3  311 3  37 3  383 73 373 133 11319 3717
8731173  3  3  319 3787 3  3 7313 3 293 193
89 317 319133723329 3 7389  3 113 193  37 311 
917 317 3 73  3 133371991331113729347 3 7311 3 
933  317 313193  37 3 93113 73  3  31141331373
97  3 7317 3  3 113  9737 313 31173  31923343
993 133  3172937113  3 9973  311 323 313 37 3
|
A Table of Prime and Composite Odd Numbers, under 10,000.
 3435363738394041424344454647484950 5152535455565758596061626364656667
0119313 347 3 1137433 13301 7311 3  317 3 3737 
03413137 3 1131373  3  03311 31337 317 31973 
07 3 113  37593 173117307 413 313 3 3137433 19
097113 133197331 311173  093  3771337193417313233 
113 23337 3  3111337173 11193477331 323 3  317113
13 3 4737 311193 73 17313 133 37329 37 359113177
173  311 323 37 353 329177313 341 361113  3733
191337 3  3 73 31361 319 173  37113132937173  
21117361 3 13329 3  37 2132317373 313  3  311
23313 3  37413  3 73 23473 113 593 1937 311373
2723 3 433  3 19372931311273 73173  311133 6137
293 1937 3  34373 113472923373613131737 3  3 73
31473 73 293 61323113  3317 3 3117337 3135931958
33  3  337 3711341 3 7333  31143319173 2337473 
3773 3733111319 313 37 33711 3 73 133 173 413  
3919 3 1137 3 233 7311 3931319329 3  371734713323
413 113237341 3 1931147371415337 3  313737917331293
43113 193 133 4337 329 3433773 233  3  3 173711
473 73  311313  347373747 3 133 7319 3 113 173
49 34123311 37 3  313734919293 313  3231137 36117
51753311 3 7319 3  3  51359 37 3 113 73  343
53311133 593  36129372333153 35373 113  313 3  3
57  31373  3  3 673 135737113  3 7347 31179329
593  317373  37473 433 597323533 1335973311 37 3
61 37 317313 73 593 1136113 3436737 311613 73  
63 7353 317233  3 11376163319313 73116737 323 3 
67 319 3 7317113 13331 367 2<*>3719373 3  3 2935967
69 433 53313113174137193 376931173  3 47331 3  37
713  3711343 3177313 31171 341 3532937133 233 73
73233 7329 3  317 311 3737 31332373  3  3 13
7737 3 413 731123317 3 7731319 3753343593 73 113
797313 323 31129319 3713379  3 3  3 373 113  
8159 319 3737313 3317317 813  3133  37113  3 
833 293117347 3  3 19313837137 3  331736113329413
8711173713361533417343 3  87317 3371137 323 3137311
8933773  359 367133  3789 317113 7353 319 311 3
91 3 17313 37 3  367739129113173 433 4137 3  
937 3 173 7323 313 3 1193367 37 371133117343193 
97133  37173  3 735919397  32329311 37 3 733377
99 5932973 1335311337 3  9937 31141317 3  367 313
|
A Table of Prime and Composite Odd Numbers, under 10,000.
 68697071727374757677787980818283 84858687888990919293949596979899
01367 319731311329 3 5930131 37133 1937173 893 
03 347 367113  3753313190331173 293  3 13331 3
073 73  3  337 311293077473  3 734123313173 
0911343 3 313713311 3 709367 323593  3973737173
117 313 3 7311733  3 11133793137 319 3 73 11
13331 3 713112331341374331347 3 73 13367 3 11323
1717 31173  3  3  3 17193723337713137331593 47
19311 3 133731937 323 319 73  329113  3  37
211937 3 413 7389133 53213 33 1137 3  3 73
23 7317313<*>3 3  371 3723 3 113 7323 389 311 
27 3  3177329 3 2331911273  37793  3117371313
29 133  317 359 37113 29 3 73  31119313 3  
313297937 317133417347 331 193  3112337 3 373 
33 31373  317113 293 13333789311 3 73  3  3
3737313 113 7317 379 33711 3  37 3  3237319
3973 11341433 71317 3731393 533 7313 3  3  3
41 113371337 3  311731941233  3  3  3731313 
43353 3 7319 31113317 343  37373 413 73  361
4741 37 311 3617313 31747 3  3238337133 113437
493 7311 3  347 32973349783313 3 73 113  3 
5113311 3  37233 8333775131741353 3 11313 37 3
53717323 32973  3 313 5379317 371131947341735937
57 3 1737 313 3737323615734311317133  3719311 3
5919 3 73  3 293 4131359113719317 3477311133 23
613 23353173 4737193 11361 73  313 311 3 4337
63 37133371737973 113  633  3  37593 7331373
673 373135337113 313 7367 13311 3 89317 37 3 
69 3 673 73 17313 3  69311 37 3531331773 713
71  37111331673191737 311714331373 47373 317193 13
733191137733  3 7311 37337 33119343 37 317293 
7713 3 193  37 341133 7773 67347293  361 3711
7937 3294731173 793 1737961233 133767383 3 7317
81737343311 3 31323 371<*>813  38373  319113 413
83  311 37 343 35973838317319 313313 1137233 67
8771319 383 3 1337 3  8733173 113 19353 3  3
89832937373  3 73 193 89133 11389613741343 3117
913 7323193  313613  391711359173 73  311 397
9361341 3 5937 3  3 793313 3 17329 3115337133
973 473 13371433531137 39729 3197311173  3 97313
99 3312337 3 11319734337993  311 3 173729341193
|

Out of the foregoing Table, are omitted all the odd numbers that end with 5, because it is known that 5 is a divisor, or aliquot part of every such number.—— The disposition of the Prime and composite odd numbers in this Table, is along the top line, and down the first or left-hand column; while their least Prime divisors are placed in the angles of meeting in the body of the page. Thus, the figures along the top line, viz, 0, 1, 2, 3, 4, &c, to 99, are so many hundreds; and those down the first column, from 1 to 99 also, are units or ones; and the former of these set before the latter, make up the whole number, whether it be Prime or composite; just like the disposition of the natural numbers in a table of logarithms. So the 16 in the top line, joined with the 19 in the first column, makes the number 1619: the angle of their meeting, viz, of the column under 16, and of the line of 19, being blank, shews that the number 1619 has no aliquot part or divisor, or that it is a Prime number. In like manner, all the other numbers are Primes that have no figure in their angle of meeting, as the numbers 41, 401, 919, &c. But when the two parts of any number have some figure in their angle of meeting, that figure is the least divisor of the number, which is therefore not a Prime, but a composite number: so 301 has 7 for its least divisor, and 803 has 11 for its least divisor, and 1633 has 23 for its least divisor.

Hence, by the foregoing Table, are immediately known at sight all the Prime numbers up to 10,000; and hence also are readily found all the divisors or aliquot parts of the composite numbers, namely in this manner: Find the least divisor of the given number in the Table, as above; divide the given number by this divisor, and consider the quotient as another or new number, of which find the least divisor also in the Table, dividing the said quotient by this last divisor; and so on, dividing always the last quotient by its least divisor found in the Table, till a quotient be found that is a Prime number: then are the said divisors and the last or Prime quotient, all the simple or Prime divisors of the first given number; and if these simple divisors be multiplied together thus, viz, every two, and every three, and every four, &c, of them together, the several products will make up the compound divisors or aliquot parts of the first given number; noting, that if the given number be an even one, divide it by 2 till an odd number come out.

For example, to find all the divisors or component factors of the number 210. This being an even number, dividing it by 2, one of its divisors, gives 105; and this ending with 5, dividing it by 5, another of its factors, gives 21; and the least divisor of 21, by the

2357
61014
1521
3042
35
70
105
210
Table is 3, the quotient from which is 7; therefore all the Prime or simple factors of the given number. are 2, 3, 5, 7. Set these therefore down in the first line as in the margin; then multiply the 2 by the 3, and set the product 6 below the 3; next multiply the 5 by all that precede it, viz, 2, 3, 6, and set the products below the 5; lastly multiply the 7 by all the seven factors preceding it, and set the products below the 7; so shall we have all the fac- tors or divisors of the given number 210, which are these, viz, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105.

Prime Vertical, is that vertical circle, or azimuth, which is perpendicular to the meridian, and passes through the east and west points of the horizon.

Prime Verticals, in Dialling, or Prime-Vertical Dials, are those that are projected on the plane of the Prime vertical circle, or on a plane parallel to it. These are otherwise called direct, erect, north, or south dials.

Prime of the Moon, is the new moon at her first appearance, for about 3 days after her change. It means also the Golden Number; which see.

PRIMUM Mobile, in the Ptolomaic Astronomy, is supposed to be a vast sphere, whose centre is that of the world, and in comparison of which the earth is but a point. This they describe as including all other spheres within it, and giving motion to them, turning itself and all the rest quite round in 24 hours.

previous entry · index · next entry

ABCDEFGHKLMNOPQRSTWXYZABCEGLMN

Entry taken from A Mathematical and Philosophical Dictionary, by Charles Hutton, 1796.

This text has been generated using commercial OCR software, and there are still many problems; it is slowly getting better over time. Please don't reuse the content (e.g. do not post to wikipedia) without asking liam at holoweb dot net first (mention the colour of your socks in the mail), because I am still working on fixing errors. Thanks!

previous entry · index · next entry

POWDER
POWER
PRACTICE
PRESS
PRESSURE
* PRIMES
PRINCIPAL
PRINGLE (Sir John)
PRISM
PRISMOID
PROBLEM