RECIPROCAL

, in Arithmetic, &c, is the quotient arising by dividing 1 by any number or quantity. So, the Reciprocal of 2 is 1/2; of 3 is 1/3, and of a is 1/a, &c. Hence, the Reciprocal of a vulgar fraction is found, by barely making the numerator and the denominator mutually change places: so the Reciprocal of 1/2 is 2/1 or 2; of 2/3, is 3/2; of a/b, is b/a, &c. Hence also, any quantity being multiplied by its Reciprocal, the product is always equal to unity or 1 : so , and , and . |

Table of Reciprocals.
No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.
116101639341210082645181005524924100414943010033223
256201612901220081967182005494524200413223020033113
333333336301587301230081300183005464524300411523030033003
425640156251240080645184005434824400409843040032895
52650153846125008185005405424500408163050032787
61666666660151515126007936518600537632460040653060032680
714285716701492541270078740187005347624700404863070032573
81256801470591280078125188005319124800403233080032468
911111116901449281290077519189005291024900401613090032362
101700142857130007692319000526322500043100032258
1109090907101408451310076336191005235625100398413110032154
1208333337201388881320075757192005208325200396833120032051
1307692307301369861330075188193005181325300395263130031949
1407142857401351351340074627194005154625400393703140031847
1506666667501333331350074074195005128225500392163150031746
1606257601315791360073529196005102025600390633160031646
1705882357701298701370072993197005076125700389113170031546
1805555557801282051380072464198005050525800387603180031447
1905263167901265821390071942199005025125900386103190031348
200580012514000714292000052600038462320003125
2104761908101234571410070922201004975126100383143210031153
2204545458201219501420070423202004950426200381683220031056
2304347838301204821430069930203004926126300380233230030960
2404166668401190481440069444204004902026400378783240030846
25048501176471450068966205004875026500377363250030769
2603846158601162791460068493206004854426600375943260030675
2703703708701149431470068027207004830926700374533270030581
2803571438801136361480067567208004807726800373133280030488
2903448288901123601490067114209004784726900371753290030395
3003333339001111111500066666210004761927000370373300030303
3103225819101098901510066225211004739327100369003310030211
32031259201086961520065789212004717027200367653320030120
3303030309301075271530065359213004694827300366303330030030
3402941189401063831540064935214004672927400364963340029940
3502857149501052631550064516215004651227500363633350029851
3602777779601041661560064103216004629627600362323360029762
3702702709701030931570063694217004608327700361013370029674
3802631589801020411580063291218004587227800359713380029586
3902564109901010101590062893219004566227900358423390029499
400251000116000625220004545428000357143400029412
41024390210100990091610062112221004524928100355873410029326
42023809510200980391620061728222004504528200354613420029240
43023255810300970871630061350223004484328300353363430029155
44022727210400961541640060975224004464328400352113440029070
45022222210500952381650060606225004444428500350883450028986
46021739110600943401660060241226004424828600349653460028902
47021276610700934581670059880227004405328700348433470028818
48020833310800925921680059524228004386028800347223480028736
49020408210900917431690059172229004366828900346023490028653
500211000909091700058824230004347829000344833500028571
51019607811100900901710058480231004329029100343643510028490
52019230811200892861720058141232004310329200342463520028409
53018867911300884961730057803233004291829300341303530028329
54018518511400877191740057471234004273529400340143540028248
55018181811500869571750057143235004255329500338983550028169
56017857111600862071760056818236004237329600337833560028070
57017543911700854701770056497237004219429700336703570028011
58017241411800847451780056180238004201729800335573580027933
59016949011900840341790055866239004184129900334453590027855
60016666612000833331800055555240004166630000333333600027777
|
Table of Reciprocals.
No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.
361002770142100237534810020790541001848460100166396610015129
362002762442200236974820020747542001845060200166116620015106
363002754842300236414830020704543001841660300165846630015083
364002747342400235854840020661544001838260400165566640015060
365002739742500235294850020619545001834960500165296650015038
366002732242600234744860020576546001832560600165016660015015
367002724842700234194870020534547001828260700164746670014993
368002717442800233644880020492548001824860800164476680014970
369002710042900233104890020450549001821560900164206690014948
370002702743000232564900020408550001818161000163936700014925
371002695443100232024910020367551001814961100163676710014903
372002688243200231484920020325552001811661200163406720014881
373002681043300230954930020284553001808361300163136730014859
374002673843400230424940020243554001805161400162876740014837
375002666643500229894950020202555001801861500162606750014814
376002659643600229364960020162556001798661600162346760014793
377002652543700228834970020121557001795361700162076770014771
378002645543800228314980020080558001792161800161816780014749
379002638543900227794990020040559001788961900161556790014728
38000263164400022727500002560001785762000161296800014706
381002624744100226765010019960561001782562100161036810014684
382002617844200226245020019920562001779462200160776820014663
383002611044300225735030019881563001776262300160516830014641
384002604244400225225040019841564001773062400160266840014620
385002597444500224725050019801565001769962500166850014599
386002590744600224225060019763566001766862600159746860014577
387002584044700223715070019724567001763762700159496870014556
388002577344800223215080019685568001760662800159246880014535
389002570744900222725090019646569001757562900158986890014514
390002564145000222225100019608570001754463000158736900014493
391002557545100221735110019569571001751363100158486910014472
392002551045200221245120019531572001748363200158236920014451
393002544545300220755130019493573001745263300157986930014430
394002538145400220265140019455574001742263400157736940014409
395002531645500219785150019417575001739163500157486950014388
396002525245600219305160019380576001736163600157236960014368
397002518945700218825170019342577001733163700156996970014347
398002512645800218345180019305578001730163800156746980014327
399002506345900217865190019268579001727163900156496990014306
400002546000217395200019231580001724164000156257000014286
401002493846100216925210019194581001721264100156017010014265
402002487646200216455220019157582001718264200155767020014245
403002481446300215985230019120583001715364300155527030014225
404002475246400215525240019084584001712364400155287040014205
405002469146500215055250019048585001709464500155047050014184
406002463146600214593260019011586001706564600154807060014164
407002457046700214135270018975587001703664700154567070014144
408002451046800213685280018939588001700764800154327080014124
409002445046900213225290018904589001697864900154087090014104
410002439047000212775300018868590001694965000153857100014085
411002433147100212315310018832591001692065100153617110014065
412002427247200211875320018797592001689165200153377120014045
413002421347300211425330018762593001686365300153147130014025
414002415547400210975340018727594001683565400152917140014006
415002409647500210535350018692595001680765500152677150013986
416002403847600210085360018657596001677965600152447160013966
417002398147700209645370018622597001675065700152217170013947
418002392347800209215380018587598001672265800151987180013928
419002386647900208775390018553599001669465900151757190013908
420002381048000208335400018518600001666666000151517200013888
|
Table of Reciprocals.
No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.No.Recip.
721001387076800130218150012270862001160190900110019560010460
722001385076900130048160012255863001158791000109899570010449
723001383177000129878170012240864001157491100109779580010438
724001381277100129708180012225865001156191200109659590010428
725001379377200129538190012210866001154791300109539600010416
726001377477300129378200012195867001153491400109419610010406
727001375577400129208210012180868001152191500109299620010395
728001373677500129038220012165869001150791600109179630010384
729001371777600128878230012151870001149491700109059640010373
730001369977700128708240012136871001148191800108939650010363
731001368077800128538250012121872001146891900108819660010352
732001366177900128378260012106873001145592000108709670010341
733001364378000128218270012092874001144292100108589680010331
734001362478100128048280012077875001142992200108469690010320
735001360578200127888290012063876001141692300108349700010309
736001358778300127718300012048877001140392409108239710010299
737001356978400127558310012034878001139092500108109720010288
738001355078500127398320012019879001137792600107999730010277
739001353278600127238330012005880001136392700107879740010267
740001351378700127068340011990881001135192800107769750010256
741001349578800126908350011976882001133892900107649760010246
742001347778900126748360011962883001132593000107539770010235
743001345979000126588370011947884001131293100107419780010225
744001344179100126428380011933885001129993200107309790010215
745001342379200126268390011919886001128793300107189800010204
746001340579300126108400011905887001127493400107079810010194
747001338779400125948410011891888001126193500106959820010183
748001336979500 25798420011876889001124993600106849830010173
749001335179600125638430011862890001123693700106729840010163
750001333379700125478440011848891001122393800106619850010152
751001331679800125318450011834892001121193900106509860010142
752001329879900125168460011820893001119894000106389870010132
7530013280800001258470011806894001118694100106279880010121
754001326380100124848480011792895001117394200106169890010111
755001324580200124698490011779896001116194300106049900010101
756001322880300124538500011765897001114894400105939910010091
757001321080400124388510011751898001113694500105829920010081
758001319380500124228520011737899001112394600105719930010070
759001317580600124078530011723900001111194700105609940010060
760001315880700123928540011710901001109994800105499950010050
761001314180800123768550011696902001108694900105379960010040
762001312380900123618560011682903001107495000105269970010030
763001310681000123468570011669904001106295100105159980010020
764001308981100123308580011655905001105095200105049990010010
765001307281200123158590011641906001103895300104931000001
76600130558130012300860001162890700110259540010482
76700130388140012285861001161490800110139550010471

Of the preceding Table, the use is evidently to shorten arithmetical calculations, and will appear eminently great to those mathematicians and others who are frequently concerned in such kinds of computations. The structure of the Table is evident; the first column contains the natural series of numbers from 1 to 1000, the 2d the Reciprocals. These Reciprocals (which are no other than the decimal values of the quotients resulting from the division of unity or 1 by each of the several numbers from 1 to 1000) are not only useful in shewing by inspection the quotient when the dividend is unity, but are also applied with much advantage in turning many divi- sions into multiplications, which are much easier performed, and are done by multiplying the Reciprocal of the divisor (as found in the Table) by the dividend, for the quotient; they will also apply to good purpose in summing the terms of many converging series.

The Reciprocals are carried on to 7 places of decimals (for the column of Reciprocals must be accounted all decimal figures, although they have not the decimal point placed before them, which is omitted to save room), each being set down to the nearest figure in the last place, that is, when the next figure beyond the last set down in the Table came out a 5 or more, the last | figure was increased by 1, otherwise not; excepting in the repetends which occurred among the Reciprocals, where the real last figure is always set down; the Reciprocals, which in the Table consist of less than seven figures, are those which terminate, and are complete within that number; such as .5 the Reciprocal of 2, .25 the Reciprocal of 4, &c.

Reciprocal Figures, in Geometry, are such as have the antecedents and conse- quents of the same ratio in both figures. So, in the two rectangles BE and BD, if AB: DC :: BC : AE, then those rectangles are reciprocal figures; and are also equal.

Reciprocal Proportion, is when, in four quantities, the two latter terms have the Reciprocal ratio of the two former, or are proportional to the Reciprocals of them. Thus, 24, 15, 5, 8 form a Reciprocal proportion, because .

Reciprocal Ratio, of any quantity, is the ratio of the Reciprocal of the quantity.

RECIPROCALLY. One quantity is Reciprocally as another, when the one is greater in proportion as the other is less; or when the one is proportional to the Reciprocal of the other. So a is Reciprocally as b, when a is always proportional to 1/b. Like as in the mechanic powers, to perform any effect, the less the power is, the greater must be the time of performing it; or, as it is said, what is gained in power, is lost in time. So that, if p denote any power or agent, and t the time of its performing any given service; then p is as 1/t, and t is as 1/p; that is, p and t are Reciprocally proportionals to each other.

previous entry · index · next entry

ABCDEFGHKLMNOPQRSTWXYZABCEGLMN

Entry taken from A Mathematical and Philosophical Dictionary, by Charles Hutton, 1796.

This text has been generated using commercial OCR software, and there are still many problems; it is slowly getting better over time. Please don't reuse the content (e.g. do not post to wikipedia) without asking liam at holoweb dot net first (mention the colour of your socks in the mail), because I am still working on fixing errors. Thanks!

previous entry · index · next entry

RAVELIN
RAY
REAUMUR (Rene - Antoine - Ferchault, Sieur de)
RECEIVER
RECEPTION
* RECIPROCAL
RECKONING
RECLINER
RECOIL
RECORDE (Robert)
RECTANGLE